C 4394	(Pages : 2)	Name
		Reg. No

SECOND SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2021

Physics/Applied Physics

PHY 2C 02—OPTICS, LASER, ELECTRONICS

Time: Two Hours

Maximum: 60 Marks

The symbols used in the question paper have their usual meanings.

Section A (Short Answer Type)

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. What is meant by destructive interference?
- 2. Explain, why very thin film appears black in reflected light?
- 3. What is Fraunhofer class of diffraction?
- 4. What is meant by resolving power of a grating?
- 5. State and explain Brewster's law.
- 6. Define optical activity.
- 7. What is a zener diode? Explain its characteristics.
- 8. Define ripple factor of rectifier circuit. What is the value of ripple factor for full wave rectification?
- 9. What are the different types of transistor configurations? Explain.
- 10. Describe the action of a capacitor-filter circuit.
- 11. Explain OR function with a two input OR gate.
- 12. Explain population inversion. How it is achieved?

 $(8 \times 3 = 24 \text{ marks})$

Section B (Paragraph/Problem Type)

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Explain constructive and destructive interference using Young's experiment.
- 14. Describe the principle and working of He-Ne laser.

Turn over

2 C 4394

- 15. How are unpolarized, plane circularly polarized and elliptically polarized light distinguished?
- 16. Distinguish between Positive and Negative crystals.
- 17. Obtain the relation between current amplification factors α , β and γ .
- 18. A diffraction grating has 0.15 m of surface ruled with 6×10^5 lines per meter. What is its resolving power in the first order?
- 19. A transistor is connected in common emitter (CE) configuration in which collector supply is 8 V and voltage drop across resistance $R_C = 800\,\Omega$ connected in the collector circuit is 0.5V and $\alpha = 0.96$. Determine the collector-emitter voltage and base current.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type)

Answer any **one** question. The question carries 11 marks.

- 20. Derive an expression for the radius of n^{th} ring in a Newton's ring arrangement in the reflected system. Describe an experiment to determine the wavelength of monochromatic light using Newton's ring arrangement.
- 21. Describe principle and working of any oscillator with neat diagram and explain how it produces sustained oscillation. Derive the necessary formula.

 $(1 \times 11 = 11 \text{ marks})$